Tunable Kondo Physics in a Carbon Nanotube Double Quantum Dot
نویسندگان
چکیده
منابع مشابه
Tunable Kondo physics in a carbon nanotube double quantum dot.
We investigate a tunable two-impurity Kondo system in a strongly correlated carbon nanotube double quantum dot, accessing the full range of charge regimes. In the regime where both dots contain an unpaired electron, the system approaches the two-impurity Kondo model. At zero magnetic field the interdot coupling disrupts the Kondo physics and a local singlet state arises, but we are able to tune...
متن کاملGate-tunable split Kondo effect in a carbon nanotube quantum dot.
We show a detailed investigation of the split Kondo effect in a carbon nanotube quantum dot with multiple gate electrodes. Two conductance peaks, observed at finite bias in nonlinear transport measurements, are found to approach each other for increasing magnetic field, to result in a recovered zero bias Kondo resonance at finite magnetic field. Surprisingly, in the same charge state, but under...
متن کاملMeasurement of quantum noise in a carbon nanotube quantum dot in the Kondo regime.
The current emission noise of a carbon nanotube quantum dot in the Kondo regime is measured at frequencies ν of the order or higher than the frequency associated with the Kondo effect k(B)T (K)/h, with TK the Kondo temperature. The carbon nanotube is coupled via an on-chip resonant circuit to a quantum noise detector, a superconductor-insulator-superconductor junction. We find for hν ≈ k(B)T(K)...
متن کاملLocal gate control of a carbon nanotube double quantum dot.
We have measured carbon nanotube quantum dots with multiple electrostatic gates and used the resulting enhanced control to investigate a nanotube double quantum dot. Transport measurements reveal honeycomb charge stability diagrams as a function of two nearly independent gate voltages. The device can be tuned from weak to strong interdot tunnel-coupling regimes, and the transparency of the lead...
متن کاملTunable Kondo effect in a double quantum dot coupled to ferromagnetic contacts.
We investigate the effects induced by ferromagnetic contacts attached to a serial double quantum dot. Spin polarization generates effective magnetic fields and suppresses the Kondo effect in each dot. The superexchange interaction J(AFM), tuned by the interdot tunneling rate t, can be used to compensate the effective fields and restore the Kondo resonance when the contact polarizations are alig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2012
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.109.156804